
www.manaraa.com

Massively Parallel

Assumption-based Truth Maintenance

Michael Dixon~ Johande Kleer

Xerox PARC ComputerScienceDept. Xerox PARC

3333 CoyoteHill Rd. StanfordUniversity 3333 CoyoteHill Rd.

Palo Alto, CA 94304 PaloAlto, CA 94305 Palo Alto, CA 94304

Abstract

De Kleer’s Assumption-basedTruth MaintenanceSystem(ATMS) is a propositional inferenceenginede-

signedto simplify the constructionof problemsolvers that searchcomplexsearchspacesefficiently. The

ATMS hasbecomea key componentof many problemsolvers,andoften theprimaryconsumerof compu-

tational resources.Although considerableeffort has gone into designingand optimizing the LisP imple-

mentation,it now appearsto be approachingthe performancelimitations of serial architectures, In this

paperwe show how the combinationof a conventionalserial machineanda massivelyparallelprocessor

can dramatically speedup the ATMS algorithms,providing a very powerful generalpurposearchitecture

for problemsolving.

Introduction

Efficiently searchingcomplexsearchspacesis a commonneedin Al problemsolvers.This efficiency

has often been achievedby introducing into the problem solver complex control structuresthat

implicitly representknowledgeabout the domain,but suchdesignsare inherentlyerror-proneand

inflexible. Instead,the Assumption-basedTruth MaintenanceSystem (ATMS) [31 providesa general

mechanismfor controlling problem solvers by explicitly representingthe structureof the search

spaceand the dependenciesof the reasoningsteps. Since its initial developmentmany problem

solvershavebeenbuilt usingtheATMS, for problemdomainsincluding qualitativephysics,diagnosis,

vision, andnatural languageparsing[2,5,7]. However, the ATMS achievesproblemsolver efficiency

by propositional reasoningabout problem solver steps, and for large problems theseoperations

comprisea significantamountof computationthemselves.In manycasestheATMS canseriouslytax

the performanceof the Lisp Machineson which theoriginal implementationruns.

Massivelyparallelcomputersprovide ordersof magnitudemore computationalpowerthanserial

machinesby connectingthousandsor millions of processorswith someform of communicationnet-

work. To make such a machinepossible the processorsmust be kept very simple; typically they

operatefrom a sharedinstructionstreamandprovide a very limited instructionset. This leadsto the

major difficulty with massiveparallelism: making good useof sucha machinerequiresstructuring

the taskto be distributedamongtheseprocessorsin sucha way that the limited computationalpower

andcommunicationavailableat eachprocessorare well matchedto the operationsthat needto be

tSupportedin partby the Natural Sciencesand EngineeringResearchCouncil of Canada(NSERC)andby a

grantfrom theSystemDevelopmentFoundation.



www.manaraa.com

performed.Wheresuchstructurecanbe found, it often involvesvery different representationsand

algorithmsfrom thoseusedon conventionalmachines.

In this paperwe show how the propositional reasoningperformedby the ATMS is well suited

to massivelyparallel hardware. By implementingthe ATMS on one suchmachine,the Connection

Machinebuilt by Thinking MachinesCorporation,we canperform ATMS operationsordersof mag-

nhude faster than on the Lisp Machine. Moreover, since this implementationprovides a superset

of the functionality of the original implementation,existing problemsolversbuilt using the earlier

ATMS receivethesebenefitswith no further changes.

Webeginby laying out thefunctionstheATMS performsandtheir role in problemsolving.* We then

givea brief descriptionof theConnectionMachine,andsketchaseriesof algorithmsfor implementing

the ATMS on it. We presentsomeanalysisof the behaviorof thesealgorithms,andclose with a few

experimentalresultsandsomeideasfor further exploration.

An Illustrative Example

We will usethe following simplesearchproblem to illustrate definitions andalgorithmsthroughout

the paper.This is not a very difficult problemandcould be solvedby muchsimpler techniquesthan

the ATMS, but will suffice to showhow it is usedandhow it works. At the endof the paperwewill

saya bit abouthow theATMS performson muchharderproblems.

Mr. X mustmeetwith Art, Betty, and Chris this afternoon. There are three opportunities for meetings:

at ~l:00,2:00,and3:00. Hemustmeetwith everyoneat leastonce.Art can’t comeat 2:00. Mr. X would

like to

I. Meet with Art alone.

2. Meet with Art before any meeting with Chris.

3. Meet with Betty before any meeting with Chris.

Which of theseare possible? Can he arrange that all of themhappen? Can he arrange them all without

any meetingsat 3:00?

Assumption~basedTruth Maintenance

The ATMS is a generalsearch-controlmechanismthat canbe coupledwith domain-specificproblem

solversto solve a wide rangeof problems.Problemsolving becomesa cooperativeprocess:first, the

problemsolver determinesthe choicesto be madeand their immediateconsequences,and transmits

theseto the ATMS. Then the ATMS determineswhich combinationsof choicesare consistentand

which conclusionsthey leadto. On the basis of theseresults the problemsolver exploresadditional

consequencesof thoseconclusions,possibly introducing new choices. This cycle repeatsuntil a set

of choicesis found to satisfy the goal or all combinationsareprovencontradictory.

The ATMS representsproblemstateswith assumptionsand nodes. Assumptionsrepresentthe prim-

itive binary choices;in our examplethere are nine assumptions,correspondingto the propositions

*Although the ATMS hasbeendescribedin earlierpapersby de Kleer [3,4], our developmentof the parallel

ATMS led usrecognizethat someaspectsof that specificationreflectedtheparticularrepresentationsusedby

theserialimplementationand were thusinadequateto describea different implementation.We will notethe

majordifferencesin footnotes.



www.manaraa.com

“Mr. X meetswith nameat lime”, where nameis oneof Art, Betty, or Chris, and time is one of 1:00,

2:00, or 3:00. We will refer to the assumptionsas a1, a2, a:3 (for meetingwith Art at 1:00, 2:00, and

3:00), 1L. h2, h3, e1, e2, and C
1

. Nodes,on the otherhand, correspondto propositionswhosetruth is

dependenton the truth of the assumptions;in our example “Mr. X meetswith Art alone”, “Mr. X

meetswith Art beforeany meetingwith Chris”, and “Mr. X meetswith Betty beforeany meeting

with Chris” areall representedby nodes,which we will refer to asn~,n2, and n3 respectively.

Dependencyrelationshipsamongassumptionsand nodesare determinedby the problemsolver

andpresentedto theATMS asjustifications. Justificationsrepresentthesedependenciesaspropositional

implications in oneof two forms:
1~A 19 A . . . A 1

m .~ r~

t
i A 1) A ... A ‘m, ~

where n. is a node, I representsa contradiction, and the i~are nodes,assumptions,or negated

assumptions.* The first form indicatesa sufficient condition for the truth of a node, the second

indicatesan inconsistency

Thus, for example,we recordthat Mr. X mustmeet with Chris at leastonceas

~c1 A ~c2 A ~C3 ~I [JI]

(—~c1 denotesthe negationof c1). We record that if Mr. X meetswith Betty at 2:00, without meeting

Chris at 1:00 or 2:00, he will havemet with Betty before any meeting with Chris as

h2 A ~ic1 A ~ ~‘ [J2]

We alsowould like to knowif 7~1,~ and m~canbesatisfiedtogether;to do this we introduceanother

node n4, and the justification

77j A 129 A ~:
1

174 [J31
In order to appreciateboth the strengthsand the weaknessesof this approachit is important to

understand the difference in perspective between the problem solver and the ATMS. To the problem

solver,nodesand assumptionsrepresentpropositionsin the problemdomain; their structureis used

by domain-specificinferencerules and the resultsof inferenceare recorded asjustifications. To the

ATMS, however,assumptionsand nodesare atomic; the only relationsamongthem are the justifi-

cationsthe problem solver hasreportedso far. This makesthe ATMS applicableto a wide rangeof

domains,but requiresthat all the relevantdomainstructurehe representedwith justifications.

To specify the behaviorof the ATMS, we needsomedefinitions:

• The assumptionspaceis the booleann-spacedefined by the set of all assumptions.Eachpoint in

theassumptionspacecorrespondsto sometotal assignmentof truth valuesto assumptions.We

also look at subspacesof the assumptionspace,which correspondto partial assignments.

• A point in the assumptionspacesupportsa node if the truth valuesof assumptionsat that point

togetherwith thejustifications logically entail thenode’s truth.

• A point in theassumptionspaceis consistentif the truth valuesof assumptionsat that point are

consistentwith thejustifications; if they entail a contradiction,that point is inconsistent.

*The sequentialATMS doesnot implementall instancesof negatedassumptions;our current implementation

handlesthe generalcase. Furthermore,this implementationis completewithout the hyper-resolutionrule

usedby thepreviousimplementation.



www.manaraa.com

• The extensionof a nodeis the subsetof the assumptionspacetnat supportsmat iioue, exciuuing

inconsistentpoints (which supportall nodes).*

• A nodeis in if it is supportedby at leastoneconsistentpoint in the assumptionspace— i e., its

extensionis non-emptyOtherwise,of course,the nodeis out.

In our examplethe assumptionspacehas2~or 512 points; given just the abovejustifications JI

and J2, ~:i’sextensionconsistsof the 32 points at which b2 and e:i are True, and c1 and e2 areFalse.

The ATMS performsfour basicoperationsfor the problemsolver:

• createa new assumption

• createa new node

• record a justification

• return a node’sextension

In addition to recordingthe assumptions,nodes,andjustifications, the ATMS maintainsanefficient

representationof eachnode’scurrentextension,and of thesetof points discoveredto be inconsistent.

Quickly updatingtheserepresentationsafter eachoperationis the key to any ATMS implementation.

Creatinga nodeandreturningan extensionrequireno changesCreatingan assumptiondoublesthe

assumptionspace(by adding anotherdimension), and hencedoublesthe extensionsof eachnode

correspondingly.

Adding a justification canchangethe extensionsin very complex ways. Each justification canbe

thoughtof as a constrainton the extensionsof the antecedentand consequentnodes: the extension

of the consequentmust include the intersectionof theextensionsof its antecedents(for the purposes

of this discussionwe take the extensionof an assumptionto be all consistentpoints at which it is

assignedTrue, the extensionof its negationto be the consistentpoints at which it is assignedFalse,

and the extensionof I to be the set of all currently inconsistentpoints). If there is no circularity

in thejustifications (i.e. the nodescanbe orderedso that no justification of a node includesnodes

that comeafter it), the extensionof eachnode is just the union over all its justifications of these

constraints;if the justifications are circular the ATMS must find the set of minimal extensionsthat

satisfy the constraints.

To computethenewextensionstheATMS usesa form of constraintrelaxation.Whena justification

is added,a check is madeto see if theextensionof the consequentalreadyincludesthe intersection

of the extensionsof its antecedents.If it doesnot, the consequent’sextensionis updated, and each

justification in which it is an antecedentmust now be recursively checked. Thesechangesmay

propagate arbitrarily far, but it is easyto show that they must terminate.This algorithmis sketched

in Figure 1 below.

Supposein our exampleJl and J3 have been recorded so far. The extensions of all nodes are

currently empty (since n~is the only one with a justification, and all of its antecedentshave empty

extensions).The extensionof I is the 64 points with 1, 4, and e3 False. If J2 is then recorded, the

intersectionof its antecedentswill be the 64 points at which 1)7 is True and c1 and e2 are False, less

*The sequentialimplementationwasformulatedin termsof labels andenvironments,a particularrepresentation

of extensions.



www.manaraa.com

record-justifi cation(j0)

I ~— I U {j0 ~ — the set of all justifications

q’. {j0} —justificationslobeprocessed

while q � 0 do

choosej C q

q~q~{j}
update-extension(j)

if node-extension-changedthen

q q Li {j’ eJ ~conseq(j)e ante(j’)}

update-extension(j)

node-extension-changed False

e fl extension(a)
a eante(j)

if conseq(j)~I then

record-inconsistency(e)

elseif e ç~extension(conseq(j))then

node-extension-changed+— True

extension(conseq(j))÷— extension(conseq(j))U e

Figure 1. Computingextensionsby constraintrelaxation.

the 32 of thosewhich are inconsistent.Thesepoints are addedto !l:~sextension.We next reexamine

J3, to seeif more pointsnow belong in n~5extension(nonedo).

The operationson extensionsare thus:

• computethe intersectionof the antecedents’extensions

• determinewhethertheresult is subsumedby the currentextensionof the consequent

• if it is not, compute the new extensionof the consequentfrom the union of the old extension

with the intersectionof the antecedents’extensions

• removea set of points that hasbeendiscoveredto he inconsistentfrom the extensionof each

node

• double the extensionof everynode whena new assumptionis added

Choosinga representationfor extensionsthat allows theselarge set operationsto be performed

as quickly as possible is the key to building a fast ATMS. The representationused by the serial

implementationwas too complexand irregular to be efficiently manipulatedby ConnectionMachine;

in the next sectionwe will briefly describethe capabilitiesof this hardwarethat must be takeninto

accountin designinga newrepresentation,andin thefollowing sectionwedescribetherepresentation

we developed.

The Connection Machine

TheConnectionMachine(CM) is a massivelyparallelprocessordesignedandmanufacturedby Think-



www.manaraa.com

ing MachinesCorporation[61. It consistsof from 16K to 64K processors,eachwith 4K to 64K bits

of memory In addition,eachprocessorcanemulateseveralprocessors,allowing for example256K

virtual processorson a 64K machine,eachwith one quarterthe memory of a real processor.The

processorsexecutefrom a single instructionstreamproducedby a host computer(a SymbolicsLisp

Machineor a DEC Vax). The basicoperationsare

• a generalbit-field combineoperation

• a very low overheadbit moveoperationbetweenadjacentprocessors(for the purposesof this

operationthe processorsareon a two dimensionalgrid, eachadjacentto four others)

• a higher-overheadgeneralbit moveoperationfrom eachprocessorto any otherprocessor(des-

tination determinedby a memoryfield), implementedby specialpurposeroutinghardware

• an operationthat ORs togetheronebit from eachprocessor

Although all processorssharethe instructionstream,not all needexecuteevery instruction. Based

on the resultsof previouscomputationsprocessorsmay be individually deactivatedand later reacti-

vated,effectivelyskipping the interveninginstructions.

To usetheCM a programis runon thehostmachinethat generatesa sequenceof machine-language

type instructions(the instruction set is called PARIS). Someparallelextensionsof conventionallan-

guages(LISP, C, and FORTRAN) that compile to PARIS-emittingcodehavebeenimplemented;alterna-

tively programscanbewritten in conventionallanguageswith explicit calls to emit PARIS instructions

astheyrun(this is how theATMS is implemented).The CM is treatedasa largeactivememory,where

eachmemorylocation canstorea valueandperform simple operationson it.

The CM design is intended to be scalable,so that largermachinescanbe readily built to handle

larger problems. Cost is, however,non-lineardue to communicationscomplexity (both router size

and wire lengthsgrow nonlinearly).

RepresentingExtensionson the CM

We presenttwo representationsfor extensionson theCM andsketchthenecessaryalgorithms. In the

first (which we refer to as algorithmA-i) we associateone processorwith eachconsistentpoint in

assumptionspace. Eachof theseprocessorsrecordsits assignmentof truth valueswith onebit per

assumption;the remainingprocessorsaretemporarilydeactivated.Node extensionsarerepresented

asasubsetof the consistentpoints,by assigninganadditionalbit perprocessorfor eachnodeto record

whetherthis point supportsthe node. Computingintersectionsandunionsand testingsubsumption

arenow singlebit operationsdonein parallel by eachactiveprocessor,andare thus extremelyfast.

Theextensionof a nodecanbe returnedto the hostmachineby retrievingthetruth valueassignments

from eachactiveprocessorthat hasthe appropriatebit set.

Note that the extensionof I is only implicitly representedas the complementof the activepro-

cessors;when points areadded to it their processorsare deactivated.Creating a new assumption

requiresa forking operationthat doublesthe numberof activeprocessors:eachactive processoris

matchedwith an inactiveprocessor,which is thenactivated.The new processorsare initialized from

the old ones,and the new assumptionis assignedTrue in eachnew processorandFalsein eachold



www.manaraa.com

one. Eachof thesestepscanbedonein parallelby all theprocessorsinvolved. (Theprocessoralloca-

tion stepis a standardCM operation;severalalgorithmsareknown [6]. Our currentimplementation

usesa very simplerendezvousalgorithmwith minimal memoryrequirements,relying heavilyon the

router.)

The algorithmsfor updating extensionsand creating a new assumptionin this representation

schemearesketchedin Figure2 below. Underlinedvariablesarestoredperprocessor,andoperations

on themareperformedin parallelin eachactiveprocessor.Otheroperationsarejust performedin the

host machine.~ is an array in eachprocessorof truth valuesindexedby assumptionsandnodes;

otherper-processorvariablesaretemporaries.The function find-free() returnsfor eachprocessorthe

addressof a different inactive processor,and the notation [p]~~~- exp is used to indicate that the

valueof expis transmittedto var in processorp (using the router). The function new-positionallocates

a currently unusedposition in the TV array Finally, the function any(exp)returnsTrue if exp is True

in any activeprocessor(usingtheglobal-ORoperation),theprocedureactivate(p)makesp active,and

the procedure deactivate()deactivateseveryprocessoron which it runs.

update-extension(antes—* conseq)

node-extension-changed*— False

a ~ True

for a e antesdo

a <— aA TV[a]

if conseq I then

if a thendeactivate()

elseifany(eA ~7j~[conseqj)then

node-extension-changed~— True

TV[consecjj~— IY[conseq]V a

new-assumption()

a ÷— new-position()

TV[a] True

child +-find-free()

[child}TV TV

TV[a] f— False

activate(chiid)

Figure 2. Partsof Algorithm A-i.

If we apply this algorithmto our exampleandbegin by creatingall nine assumptions,we will have

512 processors.ProcessingJI at that point will kill off 64 of them. ProcessingJ2 will thenmark 32 of

the remainingprocessorsassupporting03.

As problem solving proceeds,the size of the active processorset continually changes,doubling

with the introductionof new assumptionsanddecreasingascontradictionsarediscovered.Sincethe

peakprocessorrequirementsdeterminewhetheror not a problemwill run on a particularmachine,



www.manaraa.com

successmay bevery sensitiveto theorderin which theseoperationsareperformed. (Creatingall the

assumptionsfirst is the worst possibleorder.)

Our secondrepresentationscheme(algorithm A-2) reducesprocessorrequirementsby delaying

forking as long as possible,on a per-processorbasis. This increasesthe chancesboth that contra-

dictions discoveredelsewherewill makemoreprocessorsavailable,and that a contradictionwill be

discoveredin otherchoicesthis processorhasalreadymade,therebyeliminating the needto fork at

To do this we allow eachactive processorto representa subspaceof the assumptionspace,by

an assignmentto each assumptionof True, False, or Both (using two bits per assumptionrather

than one). The processorsubspacesare disjoint, and together include all consistentpoints (in the

worst casethis representationschemedegeneratesto that of A-i). Nodeextensionsarerepresented

as a union of thesesubspaces,again with one bit per processor.Creatinga new assumptionnow

requiresno immediateforking; eachactiveprocessormerelyassignsthenewassumptionBoth. Node

extensionsareretrievedasbefore;the subspacesareeasilyexpandedto individual points if desired.

Computingintersections,howevefibecomesmorecomplex: processorsin which theresultdepends

on oneor moreassumptionscurrentlyassignedBoth mustfork beforethe result canbe represented.

Considerour example again. After creating nine assumptionswe still have only one processor

allocated,with every assumptionassignedBoth (thus representingall 512 points in the assumption

space).After processingJi this processorwould fork into threeprocessors,with assignments

(:j True e2: Both C:1: Both (256 points)

ci: False c2: True C:i: Both (128 points)

ci: False c2: False C:i: True (64 points)

(notehow thesethreesubspacespartition the setof consistentpoints). After processingJ2 the last of

thesewould againfork, onehalf assigningb2 Falseand the otherassigningb:1 True andsupporting

To processall 14 justifications in our examplealgorithm A-2 requiresonly 35 processors,resulting

in six points in 724’s extension(eachcorrespondingto a schedulemeetingall threeconditions). Adding

the justification

11.3 A ~U
3

A ~b:i A ~C
3

‘ 12.~

gives ri5 an empty extension,indicating that there is no way to avoid a meetingat 3:00.

How Many ProcessorsDo We Need?

Two obvious questionsat this point are “how many processorswill thesealgorithmsrequire?” and

“could we usefewer?” Although the CM hasa largenumberof processors,it is easyto see that these

algorithmscould needexponentiallymany processorsin the worst case(indeed,suchan explosion

is almostcertainly unavoidable:propositionalsatisfiability, an NP-completeproblem[1], is trivially

encodedwith oneassumptionfor eachvariableand onejustification for eachclause).

We canunderstandthe behaviorof thesealgorithmsby noting their correspondencewith a very

familiar classof algorithms: chronologicalbacktracking. Considerfirst the following algorithm (B-

i) for finding all good points in assumptionspace,and for eachpoint the nodesit supports. This



www.manaraa.com

algorithmprocessesasequenceof ATMS operations,occasionallyrecordingits stateat backtrackpoints

and later reverting to them to reprocessthe succeedingoperations.The operationsareprocessedas

follows:

createassumption:Assign the assumptionthe truth valueTrue,and recordthis asa backtrackpoint.

On backtracking,assignFalseand try again.

createnode: Mark this node unsupported.

record justification: If the antecedentfails becauseof an assumption’struth value,discardthe jus-

tification. If it fails becauseof a currently unsupportednode,saveit with the node for future

reconsideration.If the antecedentof a I justification holds, backtrack. If the antecedentof a

nodejustification holds, mark that nodesupported.If it waspreviouslyunsupported,reexamine

any justifications savedwith it.

Whenall operationshave beenprocessed,a good point in assumptionspacehasbeenfound and

the nodesit supportsdetermined. This solution is recordedand the algorithm backtracksto find

more. Whenbacktrackingis exhausted,all solutionshavebeenfound.

The correspondencebetweenB-i andA-i is very straightforward.Theparallelalgorithmprocesses

eachoperationonce,using multiple processors,while the backtrackingalgorithmmay processeach

operation many times. Furthermore,the numberof processorsalive when the parallel algorithm

beginseachoperationis exactly the numberof times thebacktrackingalgorithmprocessesthat oper-

ation, as can be proven througha simple induction argument.A simple corollary of this is that the

processorcomplexity of A-i is the sameasthe time complexityof B-i.

Algorithm B-2, the correspondingbacktrackerfor A-2, is like B-i except that choice points are

delayeduntil a justification dependingon them is encountered.The sameexecution-frequency-to-

processor-countcorrespondenceholds betweenthesealgorithmsasbetweenB-I and A-I.

Although chronologicalbacktrackingis used to solve manyproblems,more powerful techniques

are known. The correspondencesbetweenchronologicalbacktrackingand our parallel algorithms

suggestreexaminingthesetechniquesin the contextof the parallelATMS. First, note that thereare

someimportantdifferencesbetweenparallelandbacktrackingalgorithmsin theconsequencesof such

optimizations. Backtrackingprogramsalwaysbenefitwhen a branchof the searchtreeis eliminated,

but the time requiredby the additional reasoningneededto determinethat it can eliminatedmust

be weighedagainstthe time savedby not searchingit. The parallel algorithms,on the otherhand,

receiveno benefit if therearealreadyenoughprocessorsavailable,but when thereductionis needed

the time spent is clearly worthwhile. (Note that thesetradeoffs are further complicatedwhen we

introducesequentializationtechniquesthat processthe searchspacein pieces determinedby the

numberof processorsavailable,but we will not considersuchtechniquesin this paper. Ultimately

anyparallelalgorithmwill haveto fall backon sucha strategyto dealwith arbitrarily largeproblems,

but the complexitiesand trade-offsneedmuchmore investigation).

One classof improvements(dependency-directedbacktracking)usesinformation about the con-

tradiction discoveredon one branchto cut off other branches. Theseare not applicable,since the

parallelATMS is exploringall branchesin parallel; whenit discoversa contradictionin onebranchit

will simultaneouslydiscoverit in all otherbranchesto which it applies.



www.manaraa.com

More applicable,howevefi are techniquesfor changingthe order in which justificationsareconsid-

ered.Basedon the ideasof booleanconstraintpropagation[91 we canconstructalgorithmB-3. Rather

thanprocessingthe justifications in the order presented,B-3 searchesfirst for justifications that will

lead to a contradictionor force the value of an assumption(to avoid a contradiction).Justifications

that requireforking aredelayedas long aspossible.On the parallelATMS we havea corresponding

algorithm, A-3, that canbroadcastjustifications with forking inhibited, so that thoseprocessorsthat

would deactivateor forcean assumption’struth valuedo so, while thosethat would fork donothing.

Thereis no needto keep trackof which processorswereblockedfrom forking; all that is necessaryis

to note that somewere and to recordthat that justification will have to be rebroadcastat somelater

time. Thereare limitations, however: all justifications must be completelyprocessedbeforewe can

correctlycomputea node’sextension.

Resultsand Prospects

We haveimplementeda versionof A-3 that only resortsto delayingjustificationswhenit runsout of

processors,and haverun severaltestson the ConnectionMachine,including somelarge qualitative

reasoningprogramsin which performancelimitations of theserialATMS hadbeenaseverebottleneck.

The resultsareencouraging:asexpected,the parallelATMS runsvery quickly. The effectivespeedup

for a givenproblemdependson how muchof the problemsolver’stime theATMS consumes.Placing

thirteennon-attackingqueenson a thirteenby thirteen chessboard, a problem requiring minimal

problem-solvercomputationand a lot of ATMS computation,ran seventytimes faster on a i6K CM

thanthefastestsequentialimplementationon a SymbolicsLisp Machine(60secondsvs. 4235seconds,

to find 73,712 solutions) [8]. We quickly discovered,however, that even hundredsof thousands

of processorsare insufficient for many problems,requiring that some combination of parallel and

sequentialsearchbe used.We havehadsomesuccessin our initial efforts in this direction,but there

is much work still to be donehere.

While the CM is a near-idealmachinefor developingthis sort of algorithm,it is natural to askhow

muchof the machineis needed;if it could be simplified, moreprocessorscould be built for thesame

cost. As mentionedearliefi the major expensein the currentCM designis the complex routersys-

tem. Although therouter makesimplementingthe parallelprocessorallocationvery straightforward,

silicon may bebetterspenton moreprocessors.Onepossibility would be to simply connectthepro-

cessorsin an rn-dimensionalgrid (like the CM NEWS grid, but possibly with moredimensions)and

thenrise someform of expanding-wa~~eallocation [6] to matchup processors.The memoryperpro-

cessorratioshouldalsobe examined;the currentCM arrangementgiveseachprocessorconsiderably

morememorythan it is likely to needfor thesealgorithms.

Also note that high performancecommunicationthroughoutthe processorpool is not required;

although all processorsmust be able to find anotherfree processorquickly, they never need to

communicatewith other active processors. In fact, a singlehost could useseveralCMs with the

assumptionspacedivided among them, eachallocating from their own pool of processors.Only

when one machinebecamesaturatedwould it be necessaryto shift information to another; load-

balancingheuristicswould help minimize the frequencywith which this neededto be done.



www.manaraa.com

Conclusions

Making explicit the propositionalreasoningbehind problemsolverscanmakethem simpler, more

flexible, andmoreefficient. By exploiting recentdevelopmentsin hardwaredesignwecanminimize

or eliminate the performancepenaltiesthat have sometimesoffset thesebenefitsin the past. The

ATMS appearsto match the architectureof the ConnectionMachineparticularly well: theserialhost

machineperformsthe morecomplexbut local domaininferencesteps,while theConnectionMachine

performsthe simplerbut global operationsnecessaryto determineconsistencyandsupport.

The developmentof the parallel ATMS hasalso dramaticallydemonstratedthe degreeto which

working around the performancelimitations of serial machineshas complicatedotherwisesimple

algorithms. In order to obtainadequateperformancetheLisp Machineimplementationusescomplex

representationsand elaboratelycrafted algorithms. Its developmentand tuning has takenover a

year,and theresultingcodeis aboutsixty pageslong. The ConnectionMachinealgorithmsaremuch

simpler,requirethreepagesof code,and took abouta week to develop. In doingsowewere alsoled

to a cleareranalysisof the ATMS, unencumberedby the complexitiesof the serial implementation’s

representation.

Acknowledgements

We thankThinking Machinesfor providing us with the facilities to developand test the algorithms

we havedescribed,and in particularCraig Stanfill both for his invaluableassistancein using the

ConnectionMachine and for discussionsof the implementation. John Lamping pointed out the

correspondencewith backtracking,and Jim desRivièresand SusanNewman providedvery helpful

commentson an early draft.

References

[i] Cook, S., The Complexityof TheoremProving Procedures.Proceedingsof the Third Annual ACM

Symposiumon Theory of Computing, i971.

[2] D’Ambrosio, B., A Hybrid Approachto Uncertainty.International Journal of ApproximateReasoning,

to appear.

[3] de Kleer, J., An Assumption-basedTMS. Artificial Intelligence 28 127-462,1986.

[4] de Kleer, J., Extending the ATMS. Artificial Intelligence 28 163—196, 1986.

[5] Forbus,K. D., The QualitativeProcessEngine. University of Illinois TechnicalReportUIUCDCS-

R-86-i288, 1986.

[6] Hillis, W. Daniel, The Connection Machine. MIT Press,Cambridge,Massachusetts,i985

[7] Morris, P. H.,andNado,R. A., RepresentingActions with anAssumption-basedTruth Maintenance

System.Proceedingsof the National Conferenceon Artificial Intelligence, Seattle,July i987.

[8] Stanfill, C., Personalcommunication.

[9] Zabih, R., and McAllester, D., A RearrangementSearchStrategyfor DeterminingPropositional

Satisfiability. Proceedingsof theNational Conferenceon Artificial Intelligence, St. Paul,August i988.


